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The plane problem of motion of a rigid strip-mass of finilte constant width
and infinite length,which is in rigid contact with the infinite elastic
medium and 1s acted upon by a plane elastic wave 1is reduced to two boundary
value problems of the dynamic theory of elasticity for the half-space,which
are solved by the Wiener-Hopf-Fok method.

We have obtalned Formulas for the components of the displacement and angle
of rotation of the strip which for finite intervals of time, contain a finite
number of quadratures.

An analogous problem for a strip lying on the surface of the elastic half-
space was considered in [1]. A related acoustic problem was investigated
by an analogous method by Afanas'ev [2].

1, Consider a rigid strip-mass of infinite length and finite constant
width in a rigid contact with the elastlic medium which occuples the infinite
space. Let us choose the units of length, time and mass in such a way that
the half of the strip width, the density of the medium, and the velocity of
the transverse waves become equal to unity. We introduce a Cartesian coordi-
nate system :'cyz and place the strip along *he Z-axis, so that y = 0,

— oo < z<{ o0, and |z| < 1.

Let the strip be acted upon by a plane
wave whose front 1s parallel to the edge of
the strip (Fig. 1)} and reaches it at the
instant ¢ = 0. Under the above assumptions \ -/ /
all the quantitles are independent of the ¥
cooredinate z, 1.e. the medium is 1in the
state of plane strain. When ¢ <0 the strip /
is at rest, and the total displacement vec-

tor of the medium with the components y,, v,
colncides with the displacement vector of

the moving wave Fig. 1
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Un (2, 9, 1) = ui (£ — 8 (z 4 1) + by)

U (2, 1) = v (t — Oz + 1) + &) (1.1)

for <0

The functions u, and v, satisfy conditions
u; (T) = (1:) = ( for T <O (12)

Af the type of the moving wave 1s fixed (longitudinal or transverse), the
expressions relating the functions y, and v, as well as quantities ¥ and §
can bte obtained. However, this will not be necessary in what follows. Let
us note only that for thw motion of the transverse wave 0] < { and for the
motion of the longitudinal wave O < 7, where 7 1s the inverse value of the
velocity of the longitudinal waves (7 < 1).

For t> O the motion of the elastic medium is described by Expressions
Un (2, 9, 8) = wg (¢ — B (2 + 1) + 8y) +u(z, 9, 1)
(2, y,8) = v (t — O (z+ 1) + 8y) + v (a, y, )

where ¢ and v are components of the displacement in the disturbance caused
by the presence of the strip. From (1.1) and (1.3) follow zero initial con-
ditions for the functions u and v.

(1.3)

When ¢ > O the strip is set 1n motion. The obJective of the present
paper is to describe that motion. Since the strip is nondeformable its mo-
tion can be described by the displacement of the center of gravity with
components u, (¢) and v, (¢) and the angle of rotation a(z). Equations of
motion of the strip have the form

mu,” = R, (t), mv, = Ry (1), Ja' =M (%) (14)

Here m 1s the mass, J is the moment of inertla of a unit length of the
strip, A, (¢th and R, (t) are the components of the resultant force and #(¢)is
the moment of forces acting on a unit length of the strip. Due to the rigld

contact between the strip and the medium we have (1_5)
1 1 1.

R.()=§ ltldz, Ry () = { lowldz, M) = { [onl(z— 2 da
-1 —1 -1

where x, 1s the coordinate of the center of gravity of the strip in the po-
sition of equilibrium, and

[Txu] = Ty (:L', + 0, t) — Tay ('7"’ —0, y)
[oy] = oy (.’t, + 0,8 — Syy (x, — 0, 9

are discontinuities of the stress components on the strip. If the strip

(1.6)

were assumed to be homogeneous we should set x, = O and J = +m.

Equations (1.4) are insufficlent for the description of motlon of the
strip, since thelr right-hand sides (1.5) in turn depend upon that motilon.
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In order to clarify the nature of this dependence we will assume for a
while that the quantitiles u,(¢), v, (¢) and a(t) are given functions of time.

Then from the condition of rigid contact between the strip and the medium
we obtailn

Un = U (1), Op = 9 () + (z — z) a (f) for y=0, |z|<t (1.7)
In conjunction with (1.3) this gives boundary conditions for u and v
u=1u(t) —u; (t —(x+1)98) -
° (l7e1) (8
() —v(t—(z4+1)0) + (z — zp) a (2) z| <<

I

Equations of motion of the medium in our system of unlts have the form

%u 0% 0%u 0%
eU R TR N2 2
T 7m 0x? T ay? - )6x By 1.9
2 0% zazv_@ 1 2) 0w ()
T — T 52 0y’_( -7 dx oy
As 1s well known, these Equatlons are satisfled by Expressions
— 99, W o9 _ 9y
u= .8.5 _I.. _a? , V= ay ai (1.1.0)

where o{(x,y,t) and y(x,y,t) are the potentials of the longitudinal and trans-
verse waves, which satisfy wave Equations

9% 9 92 2, 2,
g 4 T9 _ 20 i O L (1.11)
Ox? ay? T 58 O oy? o

Now, following Maue [ 2], we will represent the displacement vector (u,v)
as a sum of two components, the symmetric and the antisymmetrlc ones with

respect fo the plane y = 0
U = Uq) + Ug)y U = Yy 4+ Vy2) (1.1.2)
Here Uy, U(g), Sy T(2)» q)(l) and 1'p(2) are even, and U V) O T(1)» CPm
and '\pm are odd functions of . From here on we drop the subscripts xy and
yy of stress components.

The displacements components must be continuous everywhere for y = O (as
functions of y) and the stress components — outside of the strip. Hence it

follows that

u(z) = v(l) = 0 for y_ -‘—OO<$<O° (1 13)

Tgy = 6y = 0 for y=0, [2|>1

In place of (1.6) we obtain

[6yy] = 26 (z, + O, 1), [Tayl = 27 (2, + 0, 1) (1.14)

The symmetric and the antisymmetrlc parts of the field each separately
satisfy the equations of motian. Their boundary conditions are established
independently and hence they are determined independently of each other.
Moreover, it is sufficient to find them in the half-space y > 0 only, since

they can be continued into the half-space Y < 0 by means of thelr properties
of evenness stated above. From (1.8) and (1.13) follow boundary conditions
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Ugy = Uy () —u; (¢ —(z +1)8) fory=0, |2| <1
vy =0 for y=0, —oo Lz o0, Ty =0 for y=0,|z|>1 (1.15)

=1 () +(z—z)alt — v () —(z+ 1)) for y=0, |z <1
Uy =0  for y=0, —0<z<o0,  ggp=0 fory=0,|z|>1 (1.16)

In what follows we will also need Expressions of stresses in terms of

1
potentials (1.17)
ligd a2

* a2 o & g &
O = <(T _“5;E> P —2 523y Yoy T = (572 - @) Vo) T 2 5zay P
(=12

Because the strip has sharp edges the boundary and initial conditions
alone are insufficlent for the determination of the unique solution of the
problem. The additional condition, the so called "condition at the edge"
(see, for instance, [3]) will be formulated as follows: we will require that
in the vicinity of the edges the displacements be bounded, and the stresses
increase not faster than the lnverse value of the square root of the distance
to the edge.

Thus we arrive at two independent boundary value problems for the half-
space with mixed boéundary conditions given on three parts of the boundary
for the determination of the symmetric and the antisymmetric parts of the
solution.

2. Let us perform the double Laplace transformation with respect to x
and t e} 00

9(¢: ¥, p) :S dtS exp (— gz — pt) @ (z,y, t)dx

| dmbe e (2.1)
¢(z, ¥, 1) = 4= S dp S exp(qz + pt) 9 (g, y, p) dg
—iocot-c —ico+¢’

where ¢ > O and ¢’ is such that the path of integration with respect to ¢
lies in the region of regularity of o¢(¢,y,P) as a function of ¢, and analo-
gous transformations of all the other quantitles. The transforms will be
designated by the same letters as the orilginals, the only difference, when-
ever necessary, belng shown in arguments. We will also consider single
transformation with respect to ¢. For example

o ico-t-c
wp) = v, w =gz | w@d @22
0 —ioo}+c¢

Applying transformations (2.1) to wave Equations (1.11) we obtain
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P9 (9, v,
LD — (p — e (g, 4 1) =0

a
—"”—ﬂ‘;;—:&f’—’ — (PP =gy, p) =0

Solutions of these Equations, compatible with zero initial conditions,

(2.3)

should be chosen in the form
9 (¢, ¥, p) =9 (g, p) exp(— V7P* — ¢*)
¥ (g, ¥, p) =¥ (¢, p) exp (— V p*— ¢%)

The roots contained in above Expressions should be presented in a form

>0 (2.4)

S0 as to have
Re V1 p* — ¢ >0, Re VP — ¢ >0 (2.5)

and it 1s sufficient that these conditions be fulfilled in the band
—7 Re p<Reg < v Re p. To that end in the complex plane g we draw
the branch cuts along the rays g =+ ps§,where s is real and ¢ < § < oc.

The transforms of the boundary values of displacements and stresses can

be presented in the form
ug (¢, 0, p) = u* (g, p) €2 + wy™ (¢, p) € + i)’ (g, p)
v (95 0, p) = vt (g, p) €7 + v (¢, p) € + v3° (¢ ) (2.6)
i) (¢, 0, p) = 5" (¢, p) €7 + T3 (¢, p) e + 13)° (¢, p)
o (¢, 0, p) = 03" (¢, p) 9 + 0 (¢, p) €@ + 0»° (q: p) =12

o 1
up' (@, p) = | eun G+150,p 88 up(@. p) = | evug (2,0, p) da
L] -1

fe o]
uy™ (g, p) = | ewtugy (—5—1,0, p) d (2.7
o
and analogously for the rest of quantities in (2.6).

From boundary conditions (1.15) and (1.16) it follows that 2.8)

v {g, 0, p)=10" (¢, p) = Tty (¢ P) =0
Um (g, 0, p) = 0" (¢, p) =0y (. p) =0
Moreover, from kinematic considerations it can be concluded that the

boundary values of all the gquantitles vanish for t<x -min (‘3’, "}’), x>0
and t < — v, 3:<O Hence it follows that w,;* and p(;* are regular as func-
tions of ¢ in the half-plane Re ¢ > — min (¥, 7) Rep, and u(,, and v(,) in
the half-plane Re ¢<yRep. The quantities 0y°, 7G5, 4;)° and g;)°,
cbviously are Integer functions of ¢.

From the conditlon of the edge we obtain in the usual manner (see [4])
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vy (@ P) =0 (g™, 2w (g p) = 0(]q| ™) (2.9)
€0°(q, p)=0(|q|™), ey (g, p)=0(|q|™) for g~ Reqg>0
un (¢ P) =0(1q1™), v (¢, D) =0(q|™
€0’ (g, ) =0(] q|™), e’ (g p) =O0(|q|™) for [g|—>ooReqg0
Furthermore, it follows from boundary conditions (1.15) and (1.16) that
2u, (p)sinn(g -+ @ p) e %P . eiang uo (p)

u’ (¢, p) = — Py 7
. 20; (p)sinh(g + 0p) e °P
vw’ (¢ ) = — Py (2:10)
4 2sinhq [v (p) — zot (p}] ) (ﬂ_n;;;i __°°_'%£I_) a(p)

From(1.10) and (1.17) we have
S (2.11)
ui (4 Y5 P) = 995, (¢ ¥ P) =V PP — ¢, (¢, 9, p)

25 (@ ¥ P) = — VTP — %9, (¢, ¥, P) — 9%, (95 %> P) G=1,2)
T (¢ ¥, P) = — 20V 7" — &9, (¢, v, p) + (p* + 2¢%) %, (4. ¥, P)
o6 (9, ¥, P) = (P* — 26 9, (¢, ¥» P) + 24V P* — ¢*b,;, (¢, ¥» P)
Hence by means of (2.4), (2.6), (2.8) and (2.10) we obtain

o PV —¢ - I _
W’ (¢ p) + PRI = e T letuqy (¢, p) + ey (¢, p)l =
R Ay W@mwwmwhwmw]@m
V- VP —¢ g-+%p a '
° PVpP—g¢ - -
o (¢ leaw , p) +etvgt (g, p)l =
@° (g, p) + ATV e e (¢, p) + e %v" (¢, p)
_ 22 ¥V pt—¢* [ vy (p)sinn(g +Bp) P (2.13)
VPP VP —g 7+ 9% ’
__sinhg [vo(p) — 2o (P)] | [ cosh 9  sinng
q + ( q ¢ )oc(p)]

Equatiore {2.12) and (2.13) are the generalized functional equations of
Wiener-Hopf type. Thelr theory was considered in [4] {pp. 222 - 224). Let
us introduce two following functions of the complex varlable §: K(l) (S) and

K(g) (S) They are regular and having no zeros in the plane g which is cut
along the segment of the real axis Y \<\ 8§ < 00, and they are such that
PVl —¢
K (j_) K (ﬁ i) — : (2.44)
PRy P 1) P q"-%—V‘\’”Ps—'?z foa_qz
AVPE—¢
Ko (L) K (— L) = (2.15)
Pra\p )\ %) T g Vi —¢ Vi—¢

These functions are {see [2 and 5])
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Kuy(s) = 21(:_ Deg®),  Kigy(s) = 21(1+ Deg  (2.16)

g9 =5\ w VTP ET—0)

moreover, if s is real and lies in the interval (y, 1), the integral is in-
terpreted 1in the sense of principal value. When ¢ is real we will also use
the following designations:

K (s +i0) = My (s) — iN () = M () — iK (— 8) Ly () (2.18)

where

(2.17)

It 1s easy to see that for s < vy
M () = K5 (9), N () = L () = 0 (2.19)

Furthermore, in what follows we will need coefficlents of the Taylor
series expansion of }(U)(Q in the neighborhood of point zero

K () = kanm (2.20)
n=o0
Thus, the problem has been reduced to the solution of Equations (2.12)
and (2.13) in which the unknown functions must possess the analytic proper-

tles stated above.

3. First of all let us solve Equation (2.13). The solution of Equatilon
(2.12) will then be obtained by means of a substitution

Ky (s) =K (s), vi(t) -u(t), a()=
Multiplying both sides of (2.13) by [}f@)(q/ P17t e, we can (see [4])
make use of analytic properties of functlons contalned in it and thus obtain
the relation

icotc , ,
vy’ (¢, p) — % [Km (— %)]_l S BZ?LZZ)K(z) (_Pq ) vw (¢’ p)dg’ =
it

— 2p0 —
__ex;;(_'_ﬁl; ) vi(p)—f—v"(p (1q zo)a(P)+a(P)+
i00-+-¢
L — 9\ exp(2¢) [ — % (P)
* T [K‘z’( P )] _io§+c 9 —q {q'+ﬁp +
_l_Uo(P)—(iq:"xo)a(P)_i_ (Z(P) }K()(— ____)dq (0L c< Re g<< o) (3.1)

In exactly the same way, multiplying (2.13) by [K)(— g/p)l-te9, we
obtaln
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ioo—j—c’
vy (¢ p) + 2—1,” [K(2) (—;],‘)]_1 . S ' —MI&(?; ( 7 ) v (¢, p)dg =

9 —q
—icot-¢
_ %) 1K (P — Ky (=) (A +Lz)ap)—n(p)  alp)
*q—i-ﬁp[ K o (a/P) ]+ g T T

L B [ro) = U+ 20 2 (P)] + P72 () Ky ()
9K ) (a/pP) Ko, (a/p)

s g\t [ exp(—2¢) fexp(—2p®)
zr Koo () _io§'+, T e -
+(1— :

—nptlonan) sl }K@)( Vdg  (—e<Reg<e<n (3.2)

In (3.1) let us replace g’ by — ¢’. The lntegrals contained in the re-
sulting equation and in Equation (3.2) can be reduced to Integrals along
the branch cuts by deforming the contours of integration on the right-hand
half-plane ¢’. In the equation obtained from (3.1) we set ¢ = ps and q’=P(,
and in that obtained from (3.2) ¢ = — ps and ¢’ = p(, and thus form a system
of two Fredholm's integral equations which is decomposed into two indepen-
dent equations with respect to the sum and the difference of the unknown
functions. Integrating these equations we obtain the formal solution in
terms of the Neumann series with the ald of which we easily find Expressions
for vyt (p, ¢) and vy~ (p, ) and from (2.13) we obtain

0@)° (g9, P) =0 (9,0, p) = — Ky (%) e 1 X

¢ dty ... dt,
A Mk (G G- W P (G P ) e +

Y

+ F(z)o(%, p, ﬁ)} — K (— %) el %

A

b8
-(&/".‘8

=
Il
=

oo ® oo C
: {k1 S g ey (61 &y - - - i) Feoy e (1 s ﬁ)W’% -
=1 Y ¥
+ Fon (— - 72 9} (3.3)
- (3.4)
L, (G L (&) k
s T - k=2,3,...
(2) (&

g, = exp (— 2pl,y)
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M ) (— 1)*8)exp {— p® [1 + (—1)*1} v; (p) 3.4
F(2) k (g’ p7 ﬁ) = @) C+ (__1)k0 : - ( )

gy o [0 (p) — 72 (p) + (1) (p)] n (¥ 12 () (kg o3 (P)
g pPE pt?

The investigation of convergence of the series in (3.3) is difficult,

however, by performing the inverse Laplace transformations we will find that
for finite intervals of time the originals corresponding to all the terms of
those series starting with some number (which depends on ¢) vanish, 1.e. the
serles becomes a finite sum. It can be verified that the sum of the remain-

ing terms in Expression for Gy (.’L‘, 0, t) and in corresponding Expressions
for (z, 0, t) satlisflies the boundary conditions.

In order to obtaln Expression for 1.'(1)° (p, q), one has to replace K(z) by
Kyand L) by Ly in(3.3) and (3.4) and set

a (@ =0, u(p)= u(p), vo(p)=uyp)

4, It follows from (1.4), (1.14), (2.1)
and (2.2) that

Re(p) = 21im 7° (g, p)
q->

Ry(p) = 2lim o’ (g, p) (4.1)
g0

. a o
M (p) = —21im - 0° (g, P) — Ry (p) 74

From the relation (3.3) we easily obtain

Ry (p) = — 2kqyo X (4.2
) {oi §°,§° e (G T Fayp & p, ﬁ); Fan G p 9) dL;... dlx +
k=1~ b4
+ MO B PO |+ 2 (ko — kors o ()]
Ry (p) = — 2k x “3)
) {% §° §°II(2) o T F o (&1 P, ﬁ)g-:; Foyn Gup, ﬂ)dgl o dle+
k=1~ Y

v;(P) Mgy (M exp [—p (84 4)] [*=2
LR v o T 2 (Phieo — k) [9, () — 22 (p)1}
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M (p) = — 2p7 kz) X (4.4)
2 Cc Figyo @ P, )= Fgy 1 (G, p, )
XZ(_i)kS"‘S ey (815--008r) @0 Z @15 dt,... dlx +
k=1 Y Y
20 (p) [Meggy y — (1 +Ap) k) o ) My () P (8+2) A=t

pb? AmeB

4 Claky) 3 k) o — k) 0 k) s —3PF )1 + 3%y 0 By s — P2 @)
+ 3p? — xRy (p)
Applying the Laplace transformation with respect to time to Equations
(1.4) and substituting the resulting equations into Expressions (4.2),(4.3)
and (4.4), by the rules of the operational calculus we find Expressions for
uo (2}, vo{t) and a(z), which after some transformations can be presented in

the form
2

U (f) = D) @™« Ryy) (2) (4.5)
=1
6

2, (8) = ) €t 0;R ) (1) + zoe;M; ()}
i=1 (4.6)

6
alt) =) €'« [z, diR (1) + e;M; ((217)

j=1

Here the mark * designates the con-

volution
t Fig. 3

fQ+g@={it—vemar 8

0
The quantities R (¢), R(g) (f) ana M; (f) are determined by Expressions

k M, (A)YO (@) +Yahk, oS (t — 27,A)] A=8
Ry = — o [M5)(A)d (1) :} wo S oy (t—B —A) ‘ =
+ k%l)OS(l) 1 (£, 0) # uy (¢ — 27) (4.9)
s 9 =8
R(z) - k(g) [} [M(z) (A') 8 (t) + 1/2;&%’:(2)0 S(g) 11 (t T )")] *v; (t . ’0 _ A,) )‘=_8+
+ kg oL, (E— 2¢) — 2o (£ — 27) 1 # Sy 11 (2, 0) (4.10)

M; = 0% {Mm () gy — (4 + v3) Koo 18 () +
A=8
+ 3 VilkeS e (6 — 21, D} evs(t— 8 —A)| " —

— Vika o [(k(z) oVi—ke1) S(z) 12 (t, 0) + L) S(2) 22 (£, )] o (2 — 27) (4.11)



Motion of rigid strip-mass 123

The functions Sy (f, A) are equal to

Siyin (s A) = R (—=D)"VES Gk m (£ — 2ky, A) (=12 (412)
where k=0
S(j)kln (t, 7\') = (4-13)
1/‘:t Tk T2
= '\Jdtk S dvpy- - S Py r(ty Ty oo ) (T 71+ }")_l(l/zt — T+ 7)dry
o z (t1+ 1) L O +1) & ¢#0.0
Py (ty, Ty, ) = 20O A D 20 (=Tt W P Ly (1 — 7y +1)
@ (T T ) A (gt + T, + 2) 52 G—ta+em (419
Ly (ti+1 L (tat—v+7)
. — ) @)
P(a)l (Tt) = nZ (Yot + 27)
Ly (Yat +71) (4.15)
Siiotn = i =
At 4A) (Mt )
Moreover, we set
S(j)kln (T, %) =0 for T<<0 (416)

The quantitles u, and v, are the roots of characteristic Equatilons

Apy @) = mp* + Agyp + By =0 (4.17)
A V) = A1 (v) A@e (¥) — z (Agyv + Ba)? =0 (4.18)

Here
Ag)r = mv? + AV + B (4.19)
A(z)z = Jvt 4 (1/3 + .1302) A(z)vs + B(z)vz (1 + x02) + C(z)‘V + D(g)
Ay = 4kyo By = — 4k okan (=12
Coy = 4kl Dy = 2 (Ms kayokimys — ki) iki)a)
The coefficlents a;,b,,c,,d; and e, are 025 7"w -
defined by following Formulas: L& 3087
4=t 24, vl NN
7 Ay (1) ! J A’ (V) // et
¢ = 29 (Ag)v; + Biy) 015 - N
Aw (%) (4.20)
4= _ 2 o = 2Renl) 010 - N
! Ay (v’ T Agvy \\
where the stroke designates a derivative, 0.05 g N
Expressions (3.5) to (4.7) represent

the recurrence relations determining Uo(t): 00 05 10 1.5 /2 20
Fig. &4
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v, (t) and a(z) for any ¢, since their right-hand parts contain the values of
the unknown functions of the argument which is lagging by not less than 2y.
Due to (4.16) Expressions (4.12) are finite sums with the number of terms
(related to the waves diffracted a great number of times at the edges of the
strip) which depends on the time and 1s equal to the integer part of t/zy.

5. For the numerical interpretation of the obtained solution it is neces-
sary first of all to compute the functions-]fa)(—— Q, ﬂl@)(@, JVU)(S) for
a real and posltive g. All those functions can be expressed in terms of the
function ¢g(-s) by means of elementary operations. The latter is not expres-
sed in terms of tabulated functlons. The results of computations of g(—s)
according Formula (2.17) by means of numerical integration with the accuracy

up to 107% for the case y = 1/73 are given 1in Table 1; we also glve the
values of constants

Ky = 1.000, K
Ko = 13181, K

= —0.7688, K, = — 0.6410, K, = —0.6828
= — 05301, K, —=—00921, K= 04497

(1

(2)1 (2)2 (2)3

For t < 2y, when only once-diffracted waves are present, Formulas (4.9)
to (4.11) take a particularly simple form. Here we should distinguish two
following cases: f < 24 and 20 <t < 2v. In the first case the front of
the advancing wave has not yet reached the right-hand edge of the strip. The
poslition of the wave fronts formed by this time 1s shown in Fig. 2. The
dotted lines indicate the wave fronts formed due to the motlion of the strip.

TABLE 1.

syt g (—8) sy-1 | g(—s) | syt ' g (—s)
0.0 0.0719 2.0 0.0282 4.0 0.0176
2.1 0.0274 4.1 0.0173

0.2 0.0622 2.2 0.0266 4.2 0.0170
2.3 0.0259 4.3 0.0167

0.4 0.0548 2.4 0.0252 4.4 0.0164
2.5 0.0245 4.5 0.0161

0.6 0.0490 2.6 0.0239 4.6 0.0158
2.7 0.0233 4.7 0.0155

0.8 0.0444 2.8 0.0227 4.8 0.0153
2.9 0.0222 4.9 0.0150

1.0 0.0405 3.0 0.0217 5.0 0.0148
1.1 0.0388 3.1 0.0212 5.1 0.0145
1.2 0.0373 3.2 0.0207 5.2 0.0143
1.3 0.0358 3.3 0.0202 5.3 0.0141
1.4 0.0345 3.4 0.0198 5.4 0.0139
1.5 0.0333 3.5 0.0194 5.5 0.0137
1.6 0.0321 3.6 0.0190 5.6 0.0135
1.7 0.0311 3.7 0.0186 5.7 0.0133
1.8 0.0301 3.8 0.0183 5.8 0.0131
1.9 0.0291 3.9 0.0179 5.9 0.0129
6.0 0.0128
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In this case Formulas (4.9) to (4.11) have the form
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Ry () = 07 ko Ky (— 9) wi (8) (5.1)
Ry ()
M; (1)

= 00 Ko (— 9) v (2) (5.2)
= 0% [Okyy + (5.3)
+ (1 + vi) kgyol Kig(— B)oi(t)

For 20 < t <2y there appear
waves diffracted at the right-hand
edge of the strip. The wave fronts
formed by that time are shown in
Fig. 3. Fpr the sake of clarity of
the sketch, the wave fronts related
to the motion of the strlp are omit-
ted. Corresponding to waves dif-
fracted at the right-hand edge of
the strip, additional terms appear
in Formulas (4.9) to {4.11) which
then take form

Ry (8) = 0%y Koy (— ) wi (8) — 8 kpyo My (9) uy (2 — 28) (5.4)
Ry (t) = 0 koK gy (— ) 03 (t) — 0o Mgy (8) v (2 — 28)  (5.5)
Mi(t) = 872 [kg0 + (1 + v)) kol viK) (— 9) v (8) +

+ 072 [k ® — (1 + v;) k@] viMe) (8) v (t — 20) (5.6)

As an l1llustratlon we give the dlagrams showing the dependence of the
absolute value of the acceleration of the strip, egual to Vu,,"s—{— v, 2
(the dots designate differentiation with respect to time), and its angular
acceleration upon time for the case of a longltudinal attacking wave, in
which the stress on the elementary areas parallel to the wave front is con-

stant and equal to unity. In that case

w () =9, () = — V12— 0% for t>0 0z
- Y] |4 >
Here we set 7 = 1 /V3 and assume the mz6 2
strip to be homogeneous. PFlg., 4 1llus- 00 K/ﬁ 7

trates the dependence of the value of

R TP ————
acceleration W = Vuo“ﬂ + vo"2 upon

time ¢ for the values of strip mass m =
= 0.5, 1.0, 3.0 and 6.0. First of all

we note that for f == 20 the curves have
sharp turns related to the beginning of
diffraction at the right-hand edge of the
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strip. Furthermore, the characteristic property of those curves for small
values of the strip mass 1is the presence of a maximum which is shifted to
the right-hand side as the mass increases and vanlshes when the value of the
mass 1s sufficlently high. Fig. 5 shows the dependence of the acceleration
of the strip upon the angle of attack {the cosine of the angle of attack in
our case equals O¥v~1) and time with the mass fixed. The strip attains the
maximum acceleration when the wave is applied normally (@ = 0) at the ins-
tant f = (), For all other values of % the acceleration equals zero initial-
ly and the larger the values of & the smaller values 1t attains.

Fig. 6 shows the dependence of the angular acceleration of the strip upon
time and mass.

The author 1s indebted to N.V. Zvolinskii for his attention to this paper.
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