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The plane problem of motion of a rigid strip-mass of finite constant width 
and infinite length,which is in rigid contact with the Infinite elastic 
medium and Is acted upon by a plane elastic wave is reduced to two boundary 
value problems of the dynamic theory of elasticity for the half-space,which 
are solved by the Wiener-Hopf-Fok method. 

We have obtained Formulas for the components of the displacement and angle 
of rotation of the strip which for finite intervals of time, contain a flnlte 
number of quadratures. 

An analogous problem for a strip lying on the surface of the elastic half- 
space was considered in [l]. A related acoustic problem was investigated 
by an analogous method by Afanas'ev [2]. 

1. Consider a rigid strip-mass of infinite length and finite constant 

width In a rigid contact with the elastic medium which occupies the Infinite 

space. Let us choose the units of length, time and mass in such a way that 

the half of the strip width, the density of the medium, and the velocity of 

the transverse waves become equal to unity. We introduce a Cartesian coordl- 

nate system &YZ and place the strip along +he Z-axis, so that y = 0, 
- 00 <z<co, and Isl\<i. 

Let the strip be acted upon by a plane 

wave whose front is parallel to the edge of 

the strip (Fig. 1) and reaches It at the 

Instant t = 0. Under the above assumptions 

all the quantities are independent of the 

cooredlnate I, i.e. the medium is In the 

state of plane strain. When t\< 0 the strip 
Is at rest, and the total displacementvec- 

tor of the medium with the components u_.,u, 

coincides with the displacement vector of 

the moving wave 
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u?l (5, y, 0 = ui (t - 6 (x + 1) + 6y) 
&I (x, y, t) = vi (t - qr + 1) + 6y) (l-1) 

for t go 
The functions 1~~ and vi satisfy conditions 

ui (z) = vi (z) = 0 for z<o (I.4 
lf the type of the moving wave is fixed (longitudinal or transverse),the 

expressions relating the functions uI and u, as well as quantities 6 and 6 

can be obtained. However, this will not be necessary in what follows. Let 

us note only that for thw motion of the transverse wave 6 < 1 and for the 

motion of the longitudinal wave 6 < ?', where 7 is the inverse value of the 

velocity of the longitudinal waves (7 < 1). 

For t> 0 the motion of the elastic medium Is described by Expressions 

&l(G y, t) = ui (t - 6 (z + 1) + @I + z.! (G y, t) 

%I (z, y, t> = vi (t - 6 (2 + 1) + &I) + v (2, y, t> 
(I.3 

where u and u are components of the displacement in the disturbance caused 

by the presence of the strip. From (1.1) and (1.3) follow zero initial con- 

ditions for the functions u and U. 

When t > 0 the strip is set In motion. The objective of the present 

paper is to describe that motion. Since the strip is nondeformable its mo- 

tion can be described by the displacement of the center of gravity with 

components u,(t) and u,(t) and the angle of rotation a(t). Equations of 

motion of the strip have the form 

mu,” = R, (t), mv,” = R, (t), Ja” = M (t) (1.4) 

Here m is the mass, J Is the moment of inertia of a unit length of the 

strip, R,(t), and R,(t) are the components of the resultant force and M(t)is 
the moment of forces acting on a unit length of the strip. Due to the rigid 

contact between the strip and the medium we have (l-5) 

R, (t) = j [z,l dx, 4, (0 = ( [owl ax, il!f (t) = ( ‘[qJ (5 - x0) ax 
-1 -1 -1 

where x0 is the coordinate of the center of gravity of the strip in the PO- 

sition of equilibrium, and 

[G,l = Gq/ (z, + 0, 4 - Tw (x7 - 0, Y) 

(5, + 0, t) - q/u (5, - 0, Q 
(l-6) 

[%/I = %Y 
are discontinuities of the stress components on the strip. If the strip 

were assumed to be homogeneous we should set x0 = 0 and J = +m. 

Equations (1.4) are insufficient for the description of motion of the 

strip, since their right-hand sides (1.5) in turn depend upon that motion. 
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In order to clarify the nature of this dependence we will assume for a 

while that the quantities uc(t), uc(t) and a(t) are given functions of time. 

Then from the condition of rigid contact between the strip and the medium 

we obtain 

un = us (t), % = us (t) + (2 - 2s) a (t) for y=o, lzldl (1.7) 
In conjunction with (1.3) this gives boundary conditions for u and u 

u = uc (t) - ui (t - (z + 1) 6) 
u = v, (t) - ?I{ (t - (z + 1) fi) + (x - %I) a (0 (yq< 1) (1.8) 

Equations of motion of the medium in our system of units have the form 

2 a% ah 
rata - ~z-y$-(l-&g=O 

2 aav 2 azv (1.9) 
r&E---r,,, _~~_(l_y)&=o 

As is well known, these Equations are satisfied by Expressions 

UZ+_$, acp alt, _ -.. 
"=F az (1 .lO) 

where rp(r,y,f) and $(x,Y,t) are the potentials of the longitudinal andtran* 

verse waves, which satisfy wave Equations 

a%J 
-+$ 

aascp 
as =r ata as + 2 = ;g$ (1.11) 

Now, following Maue [23, we will represent the displacement vector (u,b) 

as a sum of two components, the symmetric and the antisymmetric ones with 

respect to the plane y = 0 

u = U(1) + U(2)? 2, = V(l) + Q.) (1.12) 

Here U(I), v(2), q,), q2), ‘pc,, and q(z) are even, and U(2), %D %b ‘h ‘Plzj 
and 9(l) are odd functions of ZJ. From here on we drop the subscripts xy and 

YY of stress components. 

The displacements components must be continuous everywhere for Y = 0 (as 

functions of Y) and the stress components - outside of the strip. Hence it 

follows that 
U(2) = V(l) = 0 for?/=O,--<z<=J 

?l) = Q(2) = 0 for y=o, I x1> 1 
(1.13) 

In place of (1.6) we obtain 

[%vl = 20(2, (C + 0, 0, [GUI = 22(I) (G + 0, 0 (1.14) 
The symmetric and the antisymmetric parts of the field each separately 

satisfy the equations of motian. Their boundary conditions are established 

Independently and hence they are determined independently of each other. 

Moreover, It is sufficient to find them in the half-space y > O'only, since 

they can be continued Into the half-spaceY< Oby means of their properties 

of evenness stated above. From (1.8) and (1.13) follow boundary conditions 
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U(1) = &I (t) - ui (t - (5 + 1) 6) for y = 0, 1 x 1 < 1 

q1, = 0 for f/=0, --<X<~, %) = 0 for !I=o, Ixl>i (1.15) 

U(2) = % (0 + (x - x0) 01 (t - Vi(t) - (z + 1) 6) for y = 0, I r I < 1 

U(Z) = 0 for y=O, -m<z<m, O(2) = 0 for Y=O, lzl>l (1.16) 

In what follows we will also need Expressions of stresses in terms of 

potentials 
(1.17) 

Q(j) =z c -%kt& %) = ( a” &‘a 
tj = 1.2) 

Because the strip has sharp edges the boundary and initial conditions 

alone are insufficient for the determination of the unlque solution of the 

problem. The additional condition, the so called "condition at the edge" 

(see,for instance, [3]) will be formulated as follows: we will require that 

in the vicinity of the edges the displacements be bounded, and the stresses 

increase not faster than the inverse value of the square root of the distance 

to the edge. 

Thus we arrive at two Independent boundary value problems for the half- 

space with mixed boundary conditions given on three parts of the boundary 

for the determination of the symmetric and the antisymmetric parts of the 

solution. 

2. Let us perform the double Laplace transformation with respect to x 

and t 

~(4W)=~dt~ exp (- v-p0v(z,y, t)dx 

0 ---co 
I 

cp(s, y, 1) = 2 I?+' dp ‘SC 

(2.1) 

ew (qx f ~4 ‘P (q, ?A P) dq 
-im+c --iC.fC’ 

where c > 0 and c' is such that the path of integration with respect to q 

lies in the region of regularity of cp(q,y,P) as a function of q, and analo- 

gous transformaeions of all the other quantities. The transforms will be 

designated by the same letters as the originals, the only difference, when- 

ever necessary, being shown in arguments. We will also consider single 

transformation with respect to t. For example 

00 ioo+c 

vc, (P) = \ e-p’v, (t) dt, ~0 (0 = & $ ep’vo (p) dp 
., 
0 --i&+C 

Applying transformations (2.1) to wave Equations (1.11) we obtain 

(2.2) 
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aaq gp p) - (r2p2 - q2) cp (q, y, p) = 0 

aq(jys PI - tp2 - qw (q, Y, p) = 0 
(2.3) 

Solutions of these Equations, compatible with zero initial conditions, 
should be chosen in the form 

cp (q, Y- P) = cp (4, PI ew (-- j/Y2p2 - q2d 
21 tqt Y, P) = ‘II, tq, P) exp t- l/p2 - q2id 

(y > o) (2.41 

The roots contained in above Expressions should be presented in a form 
so as to have 

Re jfr2p2 - q2 > 0, Re l/p2 - q2 > 0 (2.5) 

and it is sufficient that these conditions be fulfilled in the band 

--‘I’ Re p < Re q < r Re p. To that end in the complex plane 4 we draw 

the branch cuts along the rays q =k p&where s is real and 7 < s < oc. 

The transforms of the boundary values of displacements and stresses can 

be presented in the form 

@fj) (% 0, $4 = u(j)+ (Q, $4 e-q i- %A- (Crl PI e0 + %jT (Q, PI 

“(j) (Q7 0, PI =f v(j)+ (% PI e-* + a(j)- (q, P) eq + v(j)’ (!?7 P> 

?j) (Q, 09 P) = z(j)+ (Q, P) e-q + z(j)- (QI $4 eq + z(j)’ (Qv P) 

%) (!?* O, P) = G(j)+ (Q, $4 e-a + O(i)- (% PI eq + W” (4, PI 

(2.6) 

G= 1, 2) 

W)+ tQf P) = 7 e+%) (E $1; 0, PI f%, %T (9, P) = 1 ewqsu(j) (5, 0, p) ds 
0 -1 

u(j)- (q, P) = r eqFu(jj (- E - 1, 0, P) &i (2.7) 

and analogously for the rest of quantities in (2.6). 

From boundary conditions (1.15) and (1.16) it follows that 

Z’(l) (% 0, $4 = %)+ tq, $4 = ?I)- ((It Pf = 0 
(2.8) 

U(2) (q1 0, iD) = o(2)+ (47 $4 = q2)- (!I7 P) = 0 

Moreover, from kinematic considerations it can be concluded that the 

boundary values of all the quantities vanish for t<z~mirk(~,~), z>O 
and t< - q, r<O,H ence it follows that u,j) ’ and U~j)+ are ‘regular as func- 

tions of Q in the half-plane Re q> - min (6, r) Rep, and u(j)- and U(3)- in 

the half-plane Re q < 7 Rep. The quantities Utj>Ot ‘Q>“, u(j)’ and Z’(j)“, 

obviously are integer functions of 4. 

From the condition of the edge we obtain in the usual manner (see [4]) 
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u(l)+ (Q, P) = 0 ( I Q I -9, u(2)+ (g7 P) = 0 t I Q I -7 W) 

@a(,; (qt p) = 0 f I q I-“93 e-qrclfo(q, p) =0(/q/-‘/z) for Iq/--+mReq>O 

u(l)-(q, P) = Wd-‘L "(2)_ (q1 PI = O( Icrl-7 

@q2:(% $4 = O( I al -% e%)* (~5 P) = O( 1 q/-:/1) for lq/--+@Req<O 

Furthermore, it follows from boundary conditions (1.15) and (1.16) that 

%tO ((II PJ = - 
2ui (p)hh(q + 6~) FBP 2aMq uo @) 

q+@p -+- q 

“(ajo (q, P) = - 
2~~ (p)tti(q + @P) e+ 

Q + fiP 
+ (2.10) 

+ 2rinllq [PO (PI - xa WI 

From(l.10) and (1.17) we have 
q 

- +2(~-~~)~(~) 

U(j) (q, Yi PI = W(j) ($7. Y* P) - VP2 - et(j) (P, Y1 P) 
(2.11) 

“(j) (% Y* P) = - VW - Q%(j) tq? ?I? P) - Q$j, (a Y7 P> (i= 1, 2) 

T(j) (q, Y* P) = - 2cl vr2P2 - 42yj) (41 Y* P) + (P” + 2q2) $1 (q, Yt P) 

u(j) (97 Y7 PI = (P” - 2$) V(j) (47 Y, P) + 2q VP” - 42*<j) (Qv Yy PI 

Hence by means of (2.41, (2.6), (2.8) and (2.10) we obtain 

(J(Z)O (crl PI + 
Qz + v/r2Pz - q2 VP” - qa 

[eW(2j-(q, p) --I- e-*v(2)+(q, j$l = 

-- 
2PZ VP2 - qa 

[ 

vi @) dnh( q + 6~) e-@ 

= P-t- t/rZPS- qa v-PZ -q q+@p - 
(2.13) 

__ sihq t 110 (P) - zoa WI 
Q + (-d+ - 7) a (P)] 

Equations (2.12) and (2.13) are the generalized functional equations of 

Wiener-Hopf type. Their theory was considered in [4] (pp. 222 - 224). Let 

us introduce two following functions of the complex variable S: K(,)(S) and 

fG*, (4. They are regular and having no zeros in the plane s which is cut 

along the segment of the real axis r f S < 00, and they are such that 

(2.14) 

(2.15) 

These functLms are (see [2 and 51) 
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K(,) (s) = ‘I/“- eg (a), I&(s) = pw eg@) (2.16) 

where 

&II-1 JQ 1 - yy-“) (C-2 - 1) * (2.17) 
Y 

moreover, if s is real and lies In the Interval (v, l), the integral is ln- 

terpreted In the sense of principal value. When s is real we will also use 

the following designations: 

K(j) (’ + i”) = M(j) (8) - iN(j) (s) = M(j) (S) - iKlj) (- s) L(j) (s) (2.18) 

It is easy to see that for s < y 

wj, (4 = K(j) (4, N(j) (4 = L(j) (s) = 0 (2.19) 

Furthermore, in what follows we will need coefficients of the Taylor 

series expansion of K(j) Cs) In the neighborhood of point zero 

K(j) (4 = i It(j) *$ 
n=o 

(2.20) 

Thus, the problem has been reduced to the solution of Equations (2.12) 

and (2.13) in which the unknown functions must possess the analytic proper- 

ties stated above. 

3. First of all let us solve Equation (2.13). The solution of Equation 

(2.12) will then be obtained by means of a substitution 

KU) (s) - 42) (4, vi (4 -+ ui (0, a (t) s 0 

Multiplying both sides of (2.13) by [K,,) (q/ p)l-l eQ, we can (see [4]) 

make use of analytic properties of functions contained In It and thus obtain 

the relation 

"(2)+(W) - & [K(,) (-+)]-l;=J-; SK,,, (?) V(2)-(q’, p)dq’ = 

= __w(--2~6) ~+6p vi(p) +~o(P)+w-20)a(P) ; "$4 ( 

+ & [K,,) (- $)I-’ imr 
--iCO+C 

“;“I”;’ { 72: + 

+~o(P)-(l+20)~(P) I 

9' 
Gy}&2,(- $+I’ (O<c<Re q<=) (3.1) 

In exactly the same way, multiPlYIng (2.13) by [Kt,,(- q/p)lwle-q, we 

obtain 
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I 

O(2) (Y? PI + -& [K,,, (+)1-l ‘wr 

-iCO+C' 

eX;!y) A-Q) ($) u(2)+ (q’, p) dq’ = 

'i(P) 

==e [ 

K(2) (qlPImK(2) t-6) 

K(2) (q/p) 1 + (1 + 20) a (PI - vo (PI a (P) 
Q -(1”+ 

+ $2) 0 [% (PI - (1 + 50) a (P)l + P-y2) la (PI 
+ 

%,),a (p) 

G(2) (q/p) 
- 

W(2) (q/p) 

__ vo (PI + (1 - 20) a (P) 

Q’ - Jy}K2) (-$)dq’ (6-<Req<c’<r) (3.2) 

In (3.1) let us replace q' by - 9'. The integrals contained in the re- 

sulting equation and in Equation (3.2) can be reduced to integrals along 

the branch cuts by deforming the contours of integration on tne right-hand 

half-plane 9'. In the equation obtained from (3.1) we set 9 = ps and a'=PC, 

and in that obtained from (3.2) 4 = - ps and 9' = ~6, and thus form a system 

of two Fredholm's integral equations which is decomposed into two indepen- 

dent equations with respect to the sum and the difference of the unknown 

functions. Integrating these equations we obtain the formal solution in 

terms of the Neumann series with the aid of which we easily find Expressions 

for ut2)+ (p, q) and n(2)- (P, q) and from (2.13) we obtain 

‘Tt2j” (q, P) = G(2) (41 0, p) = - K(,) (-$) e-9 x 

41...4k 

k=l Y ; 

tk) p(2) k (51; P, 6, 5k _ qp-~ + 

+ Ft2) o (5, P, 9)) - Kc2) (- $) e* x 

rI (2) k = 
(k = 2,3,. .) 

II 
-5,) (cl) 

(2) 1 = ~ exp (- 2~51) n 
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&a, k (5, Pt e, = 

Jf(,) ((- l)k%w F- ~6 [I + (-l)kl) vi (P) (3.4) - 

5 + c-uke 

_ $2) ,, [vo (PI- au (P) + (-Oka b-41 

+ 

Wkkt2, Ia (~1 Wk+2) ,, a (14 

I PC - PC? 

The investigation of convergence of the series In (3.3) Is difficult, 

however, by performing the inverse Laplace transformations we will find that 

for finite Intervals of time the originals corresponding to all the terms of 

those series starting with some number (which depends on t) vanish, l.e.the 

series becomes a finite sum. It can be verified that the sum of the remaln- 

lng terms In lkpression for U(s) (3, 0, t) and In corresponding Expressions 
for V(Z) (r, 0, t) satisfies the boundary conditions. 

In order to obtain Expression for 'Et,)' (p, q),one has to replace K(,)by 
Ktl)and L(s) by &) in(3.3)snd (3.4) and set 

u (P) - 0, vi (PI - ui (P), 

4. It follows from (1.4), 

and (2.2) that 

& (~1 = 2 1;~ q,,“ (q, 

4, (P) = 2 lim q2)0 (q, 
Q+o 

M(p) = -2lima *-Lo (jq 0(2? (!J, P) 

From the relation (3.3) we easily obtain 

VII(P) = U,(P) 

(1.14), (2.1) 

P) 

PI (4.1) 

- RV (PI 5 

Fig.2 

Rx (P) = - 241,o x (4.2) 
Co F 

x@$ ’ 
. . . &I) k (tl,..., tk) 

F(l), (CL P. 6) + F(,), (61. P, 6) 
G,... d5k f 

Y 
ck 

+ 
ui (P) M(,) 04 exp i-p (8 + VI A=8 

6 I ,=_,+2(Pk,,,,--(,,,)u,(P) I 

Rv (PI= - 2k,,,o x (4.3) 
00 m 

x’k$~~ ’ q2), a* Pv 6) + F(2), (Cl, P* 6) . . . n(2) k (61, * . . , Sk) d5 I - . . ‘& + 
Y 

fk 

+ 
‘i (P) M(2) (A) exp I- P (fl + k)l A=9 

6 I 
A=--8 + 2 Wm - 42,~ ) [vo (~1 - Zo& (P)l} 
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M (P) = - W’k,2,0 x (4.4) 

r~(-1)~~...yi-I(2),(51,...,5r) F(2)“(519 p* 6);;F(2)1(c1vp~ *) dc,...dck+ 
k=l Y Y 

?&a 

+ 
2vi (PI W(,) I- (1 + API $2) o 1 M(2) @I 

PfEZ 
e 

_ 
P ('3+x) 

A=--0 + 

+ 
* (flak(,) I k(,) 2 - 11ak(2) o k(,) 3 -3pkat2) 1 + 3pak(,) o kc,) 1 - pSkg) ;, a @) 

3P” 
- %4 (P) 

Applying the Laplace transformation with respect to time to Equations 

(1.4) and substituting the resulting equations into Expressions (4.2),(4.3) 

and (4.4), by the rules of the operational calculus we find Expressions for 

u,(t), DO(t) and a(t), which after some transformations can be presented in 

the form 

uc (t) = 5 ajepjt * I$,, (t) (4.5) 
j=l 

U, (t) = $J eYjt * [bjl?t2, (t) + X&jMj (t) 1 

j=l (4.61 

U(t) = $J eVjf * [C?+djR~p, (t) + ejMj (t)l 

j=l (4.7) 
Here the mark * designates the con- 

volution 

f(t)*g(~)=if(t-r)g(r)dr 

Fig. 3 

(4.8) 

The quantitiez Rtl, (t), Rt2, (t) and Mj (i?) are determined by Expressions 

%, = - 
k ajo [%,(1”)-” (1) + ‘/a hk(,), SC,),, (t - 2-r&1 

-3 
* Uj (t - 6 - h) 1 ?84 + 

+ &&l~ ll(h 0) * uo (t - 27) (4.9) 

42, = - 

Mj z fle2Vj { 
M(2)(h) [hk(,)l - (1 + vj) k(2)o 18 (t> + 

- 
v&a) o [(k(2) o ~j - 42) 1) S(2) 12 (t, 0) + k(a)0 S(2) 22 ( 

t, O)] * a(t - 279 (4.11) 
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The functions S(j)l,,(t, h) are equal to 

+)I?&, A) = ; (-#n-l'k&j, kin (t - 2JEL(, A) (i= 1, 2) (4.12) 

where 

p(j) k (r,, f,, . -. , t) = 
L(j) (r1-k r) L(j) (l/St -rk + 7) 

nk+'('/d + T&l+ 27) (4.14) 

P(j)1 (GJ) = 
L(j) fzl + T) L(j) P/d - rl -f 7) 

na (l/d + 2T) 
(4.15) 

s. (I)0 In = 
L(j) V/d + 7) 

JI w2t + r + v’ w2t + T)* 

Moreover, we set 

S(j) kln(Tv A) - 0 for z<o (4.16) 

The quantities pJ and V, are the roots of characteristic Equations 

A(I) (PL) = 7nP2 + 41, P + B(l) = 0 (4.17) 

42) (4 - 42,1 (4 42) 2 (4 - xo2 (42,~ + 42J2y2 = 0 (4.18) 
Here 

A (2) 1 5 my2 + 42~ + 42) (4.19) 

~$2~2 = Jv4 + (l/s + G,‘) Acap + 42)~~ (1 + zo2) + C(2p + 42) 

A(j) = 4ktjjz, B(j) = - 4k(j) ok(j)1 (i = 1, 2) 

C(2) = 4k,2,:, D(2) = 2 (l/2 ha,ok(a,a - k(2,&2,2) 

The coefficients a,,B,,o,,d, and e, are 

defined by following Formulas: 

2 
aj = 2A(2) 2 @j) 

*‘(I) (P$ ’ bj = A’t2) (vj) 

Cj = 26j (A(2)vj + B(2)) 
*(2) (‘j) (4.20) 

d, = - A~~% ) , 
j 

ej = “~!“‘I~~:’ 
(2) 3 

where the stroke designates a derivative. 

Expressions (3.5) to (4.7) represent 

the recurrence relatlons determining h(t), 
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uo(t) and a(t) for any t, since their right-hand parts contain the values of 

the unknown functions of the argument which is lagging by not less than 2~. 

Due to (4.16) Expressions (4.12) are finite sums with the number of terms 

(related to the waves diffracted a great number of times at the edges of the 

strip) which depends on the time and Is equal to the integer part of t/a. 

5. For the numerical Interpretation of the obtained solution it is neces- 

sary first of all to compute the functions .K(j, (- s), M(i) (s), N(i) (s) for 

a real and positive s. All those functions can be expressed in terms ofthe 

function 8(-s) by means of elementary operations. The latter is not expres- 

sed in terms of tabulated functions. The results of computations of g(-s) 

according Formula (2.17) by means of numerical Integration with the accuracy 

up to 10m4 for the case y = l/J3 are given in Table 1; we also give the 

values of constants 

K (1J,, = 1.000, K(,), = -0.7688, I$,), = - 0.6410, I$,), = -0.68'8 

G), = 1.3161, Kc,,, = - 0.5301, K(,), = -0.0921, K(,,, = 0.4497 

For t < 2y, when only once-diffracted waves are present, Formulas (4.9) 

to (4.11) take a particularly simple form. Here we should distinguish two 

following cases: t < 26 and 26 < t < 27'. In the first case the front of 

the advancing wave has not yet reachedthe right-hand edge of the strip. The 

position of the wave fronts formed by this time is shown in Fig. 2. The 

dotted lines indicate the wave fronts formed due to the motion of the strip. 

TABLE 1. 

8-r 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

::a 

E 
1:5 

:.i 
1:8 
1.9 

B b-4 

0.0719 

0.0622 

0.0548 

0.0490 

0.0444 

0.0405 
0.0388 
0.0373 
0.0358 
0.0345 
0.0333 

EZ 
0:0301 
0.0291 

sy-’ 

ET 
212 
2.3 
2.4 
2.5 
2.6 

z 
2:9 
3.0 
3.1 
3.2 

33:: 
3.5 

33.: 
3:8 
3.9 

g f-8) 

0.0282 
0.0274 
0.0266 
0.0259 
0.0252 
0.0245 
0.0239 
0.0233 
0.0227 
0.0222 
0.0217 
0.0212 
0.0207 
0.0202 
0.0198 
0.0194 
0.0190 
0.0186 
0.0183 
0.0179 

BY-1 B (-4 

0.0176 
0.0173 
0.0170 
0.0167 
0.0164 
0.0161 
0.0158 
0.0155 
0.0153 
0.0150 
0.0148 
0.0145 
0.0143 
0.0141 
0.0139 
0.0137 
0.0135 
0.0133 
0.0131 
0.0129 
0.0128 



Motion of rigid strip-mass 

In this case Formulas (4.9) to (4.11) have the form 
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Fig. 5 

For 2#'< t <2r there appear 

waves diffracted at the right-hand 

edge of the strip. The wave fronts 

formed by that time are shown In 

Fig: 3. For the sake of clarity of 

the sketch, the wave fronts related 

to the motion of the strip are omlt- 

ted. Corresponding to waves dif- 

fracted at the right-hand edge of 

the strip, additional terms appear 

in Formulas (4.9) to (4.11) which 

then take form 

Rt,, (t) = ~-lho~~~, (- *I ui (t) - t-r1 J&J&) (fi) ui (t - 26) (5.4) 

&) (0 = ~-‘bh (-- +-9 vi (Q - ~-‘JbJJ+f~,, (@) vi (t - 26) (5.5) 

As an illustration we give the diagrams showing the dependence of the 

absolute value of the acceleration of the strip, equal to ills" + Vo’*a 

(the dots designate differentiation with respect to time), and its angular 

acceleration upon time for the case of a longitudinal attacking wave, in 

which the stress on the elementary areas parallel to the wave front is con- 

stant and equal to unity. In that case 

Here we set y = 1 /vg and assume the 

strip to be homogeneous. Fig. 4 illus- 

trates the dependence of the value of 

acceleration W = l/uO"a+ v0"2 upon 

time t for the values of strip mass m = 

= 0.5, 1.0, 3.0 and 6.0. First of all 

we note that for t = 26 the curves have 

sharp turns related to the beginning of 

diffraction at the right-hand edge ofthe 

I I I Y 1 

Fig. 6 
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strip. Furthermore, the characteristic property of those curves for small 

values of the strip mass is the presence of a maximum which is shifted to 

the right-hand side as the mass increases and vanishes when the value of the 

mass is sufficiently high. Fig. 5 shows the dependence of the acceleration 

of the strip upon the angle of attack (the cosine of the angle of attack in 

our case equals fly-l) and time with the mass fixed. The strip attains the 

maximum acceleration when the wave Is applied normally (6= 0) at the ins- 
tant t = 0. For all other values of 6 the acceleration equals zero initial- 

ly and the larger the values of 6 the smaller values it attains. 

Fig. 6 shows the dependence of the angular acceleration of the strip upon 

time and mass. 

The author is indebted to N.V. Zvolinskii for his attention to this paper. 

BIBLIOGRAPHY 

i. 

2. 

3. 

4. 

5. 

6. 

Flitman, L.M., 0 dvizhenii pod deistviem seismicheskoi volny zhestkoi 
massivnoi polosy, lezhashchei na uprugom poluprostranstve (On the 
motion of a rigid strip-mass lying on an elastic half-space and exci- 
ted by a seismic wave). FMM ~01.26, NO 6, 1962. 

Afanas'ev, E.F., Difraktsiia nestatsionarnoi volny davleniia na podvizh- 
noi plastine (Diffraction of a non-steady-state pressure wave on a 
mobile plate). PMM ~01.26, w 1, 1962. 

Maue, A.W., Die Beugun elastischer Wellen an der Halbebene. Z.angew. 
Math.Mech., Bd. 33(1 1953. 

Maue, A.W., cber die Kantenbedi ung in der Beugungstheorie elastischer 
Wellen. Z.Naturf., Bd.i'a, S.3 7 - 389, 1952. net 

Noble, B., Primenenie metoda Vinera-Hopfa dlia resheniia differentsial - 
nykh uravnenii v chastnykh proizvodnykh (Application of the Wiener- 
Hopf Method to the Solution of Partial Differential Equations). (Rus- 
sian translation). IL, 1962. 

Filippov, A.F., Nekotorye zadachi difraktsii ploskikh uprugikh voln 
(Some problems on diffraction of plane elastic waves). PM! vO1.20, 
NP 6, 1956. 

Translated by O.S. 


